0.P.	Code: 18CE1006 R18			
~				
	Reg. No.			
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY::PUTTU	2		
(AUTONOMOUS)				
	(For Students admitted in 2018 only)			
Ti	me: 3 hours STRUCTURAL DYNAMICS Max. Marks:	60		
	(Structural Engineering)			
	(Answer an Five Onts 3×12–00 Marks)			
1	a Derive the equation of motion for damped single degree of freedom system	6M		
	with forced vibration.			
	b. Briefly explain oscillatory motion	6M		
2	Explain different types of vibration problems and derive their equation of motion.	12M		
_				
	Derive the amplitude of the given problem when time is 4t.			
	+			
	F0	101.6		
3		12M		
	+ 2+ 3+ 4+			
	OR			
4	Derive the formula for Damping ratio & Frequency ratio for undamped single	12M		
	degree of freedom system with forced vibration.			
_	UNIT III	12M		
5	and also derive the solution for the equation.	12111		
	OR			
	Draw the mode shapes for given problem.			
	5000 KG			
	40 KN/m			
6	6000 KG	12M		

60 KN/m

Q.P.	. Code: 18CE1006	
	UNIT IV	
7	Derive the solution of equation of motion for the beam subjected to uniformly 12 distributed load.	2M
	OR	
8	Derive the natural frequency and mode shapes for uniform beam having both end 12	2M
	free.	
9	Explain step by step procedure of Stodola's method? Derive fundamental natural 12 frequencies and mode shapes?	2M
	OR	
10	Find the fundamental natural frequencies and mode shapes of a vibratory system12shown in figure by using Transfer matrix method12	2M

END

|

-